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ConceptConcept

�With respect to the electric field, a photodiode 
provides multiplication and integration

�Easily used to construct a field correlator

�Why not use for signal processing?
PHASE

�Address using recent advances in carrier-
envelope phase control 
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CarrierCarrier--Envelope PhaseEnvelope Phase

�Generally in optics:
• absolute phase never matters
• only relative phases

�Ultrashort pulse (~10 fs or less)
• envelope provides “absolute” phase reference

Of course:
- arbitrary  envelope  

“absolute” phase
- but comparable to 

clock

(carrier-envelope phase)

Of course, the
phase of the envelope
is referenced to a clock

and not “absolute”

φCE
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OutlineOutline

�Carrier-envelope (φCE) phase in waveform 
synthesis

�Technique for stabilizing φCE from 
modelocked lasers
• Uses frequency domain methods

�Results for φCE coherence

�Discuss possible means of measuring 
“absolute” φCE

�Prototype correlator
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φφφφφφφφCECE, waveforms and correlations, waveforms and correlations
C-E phase:
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Group vs. Phase VelocityGroup vs. Phase Velocity

�Carrier-envelope phase is dynamic:
• In any material, the group and phase velocities 

differ
• Therefore carrier phase slowly drifts through the 

envelope as a pulse propagates
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Historical Progress in Ultrashort PulsesHistorical Progress in Ultrashort Pulses

< 10 fs directly 
from oscillator
• high repetition 

rate

Nd:glass

S-P DyeDye

CW Dye

Diode

Nd:YLF

Cr:YAG

Cr:liS(C)AF
Er:fiber (telecom)
Cr:forsterite
Nd:fiber

Ti:sapphire

CPM

w/Amplification
& Compression
(Low Rep. Rate)

Color
Center

1965 1970 1975 1980 1985 1990 1995

10

10

10

10

-11

-12

-13

-14

ADVANCES IN SHORT PULSE GENERATION

DyePu
ls

ew
id

th
(s

ec
)

Year

Nd:YAG

Courtesy of E.P. Ippen



stc 7/24/2003 APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

ModelockingModelocking
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ModelockingModelocking
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ModelockingModelocking

� Constructive 
interference 
between 
phase 
locked cavity 
modes
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Kerr Lens Modelocked Ti:sapphireKerr Lens Modelocked Ti:sapphire
� Ti:sapphire has large bandwidth
� Supports shortest pulses
� Simple (amazingly)
� Modeled as dispersion managed soliton

M.T. Asaki, et al, Opt. Lett. 18, 977 (1993)

Output 
coupler High reflector

Pump

Ti:Sapphire
crystal

Prisms
(Dispersion compensation)
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Kerr Lens ModelockingKerr Lens Modelocking

� Kerr Lens & Aperture 
gives increased 
transmission at high 
intensity

� Increased transmission 
at high intensity = 
saturable absorption

� Short, intense pulse 
preferred in laser

� Kerr effect instantaneous
� Not self starting

Gaussian
Laser Beam

High Intensity

Gaussian Beam =
Gaussian Index Profile =
Gradient Index Lens

Gaussian
Laser Beam

Low Intensity

Kerr Medium
n = n0 + n2I
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Group vs. Phase in Modelocked LasersGroup vs. Phase in Modelocked Lasers

�Each pulse emitted by a modelocked laser 
has a distinct envelope-carrier phase
• due to group-phase velocity differential inside 

cavity

Output
Coupler

High
Reflector

Laser
Cavity Free Space
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Frequency Spectrum of ML LaserFrequency Spectrum of ML Laser

�Temporal pulse width       frequency width
�Train of pulses       comb of frequencies

Frequency

In
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frep Time
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Group vs. Phase in SpectrumGroup vs. Phase in Spectrum

�Shift in time is linear phase with frequency
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Group vs. Phase in SpectrumGroup vs. Phase in Spectrum

�Shift in time is linear phase with frequency

0

2

4

6

t = 2τ

t = τ

t = 0

Ph
as

e 
(R

ad
.)

Frequency



stc 7/24/2003 APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

Group vs. Phase in SpectrumGroup vs. Phase in Spectrum
� Shift in time is linear phase with frequency
� Constructive interference results in frequency comb
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Group vs. Phase in SpectrumGroup vs. Phase in Spectrum
� Pulse-to-pulse phase shift shifts frequency of 

constructive interference
� Cavity group-phase velocity difference determines 

absolute optical frequencies
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Time Domain      Frequency DomainTime Domain      Frequency Domain

2πf0= ∆φ frep

I(f)

f

f0

0

frep

• Frequency modes of the fs pulse are offset from fn=0=0 by f0

Time 
Domain

Frequency 
Domain

2∆φ

t

E(t) ∆φ

1/ frepF.T.
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�How can we control the absolute frequencies, 
and hence the group-phase velocity difference?

�Self-referencing:

�Beat frequency at overlap = f0

Self Referencing TechniqueSelf Referencing Technique

Fundamental
Spectrum

Second Harmonic
Spectrum

Frequency

m frep + f0 n frep + f0

frep 2(m frep + f0) 
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Generation of BandwidthGeneration of Bandwidth

�Microstructured fiber
• dispersion zero at ~800 nm
• pulses do not spread
• continuum generation via self-phase 

modulation
J.K Ranka, et al, Opt. 
Lett. 25, 25 (Jan. 2000)
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Output 
coupler

High reflector
Pump

Ti:Sapphire
crystal

Control of Laser CombControl of Laser Comb
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ExperimentExperiment
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Time Domain CrossTime Domain Cross--CorrelatorCorrelator

Scan

GaAsP
Photodiode
(nonlinear)

Vacuum

Matched mirror bounces

Interfere pulse i with
pulse i + 2.L. Xu, et al., Opt. Lett. 21, 2008 (1996)
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Cross CorrelationCross Correlation

� Auto-correlation is 
always symmetric

� Cross-correlation 
fringes shift: pulse to 
pulse phase

� Fit to obtain envelope 
peak

� Extract carrier phase 
shift relative to 
envelope

-20 -10 0 10 20

Envelope
Fit

Cross-
Correlation

 

Delay (fs)
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Phase Stabilization!Phase Stabilization!

�Shift of pulse-to-pulse phase by ~π
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Nonlinear Phase in FiberNonlinear Phase in Fiber

�Spectral broadening is highly nonlinear
• Amplitude noise converted to phase noise
• Simple estimate (ignoring dispersion)

δωmax = 0.86 ∆ω φmax [Agrawal]

• Yields φnoise approaching 2π

�Measure φmax & phase noise 
interferometrically

A Poppe, et al, Appl. Phys. B 72 (2001) pp 373-376
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Fiber phase noise is contributed by:

Nonlinear phase is the intensity-dependent contribution from φ:
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PAC − is the measure of conversion between 
amplitude to phase noise (rad/mW)

Phase noise can limit our ability to perform waveform 
synthesis: ∆φCE= 2 π δ/ frep + ∆φNL

Amplitude to Phase ConversionAmplitude to Phase Conversion
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Dueling Dueling ff to 2to 2f f ’s’s

LASER
Amplitude 
modulator 

Locking 
electronics Counter

AOM

fAOM

1064 nm

532 nm

LBO

f to 2f

Monitor

P = Po +∆P Sin[ωmod t]

(ωmod= 0.1 Hz)

δL = δ+ ∆fNLCos[ωmod t]

δ- ∆fNL Cos[ωmod t]

δM  = δ- ∆fNL Cos[ωmod t]

∆φNL= 2 π ∆fNL/frep

δM

- ∆fNLCos[ωmod t]

δL

f to 2f

Lock



stc 7/24/2003 APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

Amplitude to Phase Conversion ResultsAmplitude to Phase Conversion Results

Power coupled into 
fiber = 42mW

Fiber length 4.5 cm

CA-P ∆I = 2π δ /fmod
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Dueling Dueling ff to 2to 2f f ’s: faster modulation’s: faster modulation

LASER
Amplitude 
modulator 

Locking 
electronics

F-V 
converter

AOM

fAOM

1064 nm

532 nm

LBO

f to 2f

Monitor

P = Po +∆P Sin[ωmod t]

(ωmod= 10-40 kHz)

δL = δ+ ∆fNLCos[ωmod t]

δ- ∆fNL Cos[ωmod t]

δM  = δ- ∆fNL Cos[ωmod t]

∆φNL= 2 π ∆fNL/frep

δM

- ∆fNLCos[ωmod t]

δL

f to 2f
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FF--V ResultsV Results
� Lower Background Noise
� Confirms modulation frequency dependence
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AM   PM Conversion CoefficientAM   PM Conversion Coefficient

�Same value as low frequency measurement
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CE Phase noise due to fiber AM   PMCE Phase noise due to fiber AM   PM
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Measurement of fMeasurement of f00 linewidthlinewidth
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Phase noise spectrumPhase noise spectrum
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Direct ExtraDirect Extra--cavity Measurement of cavity Measurement of ∆∆∆∆∆∆∆∆φφφφφφφφCE CE 
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Measurement of “absolute” Measurement of “absolute” φφφφφφφφCECE

�Two arm interferometer adds arbitrary phase
• Eliminate interferometer
• Compress pulse

�Phase shifts in second harmonic crystal
• None in exact phase matching (hard to achieve)
• Short pulse inherently means sum frequency

�Quantum rather than optical interference
• Semiconductor implementation: quantum 

interference control of injected currents
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Phase errors in second harmonicPhase errors in second harmonic

� Imperfect phase matching
�Detection at other than exact phase matching 

angle

�Short pulse    range of wavelengths 
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Quantum InterferenceQuantum Interference

� Interference between one-
photon and two-photon 
absorption in LT-GaAs

�Yields current with 
direction that depends on 
φCE

�Calculations (Sipe & Bhat, 
U. Toronto) indicate 
detectable signal

�Thin (1 micron) active 
region

E
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Prototype Prototype CorrelatorCorrelator: Block Schematic: Block Schematic

�Rep-rate offset lock to ML laser for fast scan
�Pulse shapers to generate waveforms from 

transform limited pulse

ML Laser 1

ML Laser 2
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SummarySummary

�Optical waveform synthesis based on control 
of the carrier-envelope phase is an interesting 
new approach to analog optical signal 
processing

�Achieved first milestone of improved carrier-
envelope coherence

�Progress toward controlling the “absolute” 
carrier-envelope phase 


